Finite Element Discretization Strategies for the Inverse Electrocardiographic (ECG) Problem
نویسندگان
چکیده
Successful employment of numerical techniques for the forward and inverse electrocardiographic (ECG) problems requires the ability to both quantify and minimize approximation errors introduced as part of the discretization process. Conventional finite element discretization and refinement strategies effective for the forward problem may become inappropriate for the inverse problem because of its ill-posed nature. This conjecture leads us to develop discretization strategies specifically for the inverse ECG problem. By quantitatively analyzing the connection between the ill-posedness of the continuum inverse problem and the illconditioning of its discretized version, we propose strategies involving hybrid-shaped finite elements to discretize the inverse ECG problem effectively and efficiently. We also propose the criteria for evaluating the quality of the resultant discrete system. The efficacy of the strategies are demonstrated on a realistic torso model in both two and three dimensions.
منابع مشابه
Adaptive Finite Element and Local Regularization Methods for the Inverse ECG Problem
One of the fundamental problems in theoretical electrocardiography can be characterized by an inverse problem. We present new methods for achieving better estimates of heart surface potential distributions in terms of torso potentials through an inverse procedure. First, we outline an automatic adaptive refinement algorithm that minimizes the spatial discretization error in the transfer matrix ...
متن کاملSpectrally formulated finite element for vibration analysis of an Euler-Bernoulli beam on Pasternak foundation
In this article, vibration analysis of an Euler-Bernoulli beam resting on a Pasternak-type foundation is studied. The governing equation is solved by using a spectral finite element model (SFEM). The solution involves calculating wave and time responses of the beam. The Fast Fourier Transform function is used for temporal discretization of the governing partial differential equation into a se...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملDevelopment of a Moving Finite Element-Based Inverse Heat Conduction Method for Determination of Moving Surface Temperature
A moving finite element-based inverse method for determining the temperature on a moving surface is developed. The moving mesh is generated employing the transfinite mapping technique. The proposed algorithms are used in the estimation of surface temperature on a moving boundary with high velocity in the burning process of a homogenous low thermal diffusivity solid fuel. The measurements obtain...
متن کاملInverse electrocardiographic source localization of ischemia: An optimization framework and finite element solution
With the goal of non-invasively localizing cardiac ischemic disease using body-surface potential recordings, we attempted to reconstruct the transmembrane potential (TMP) throughout the myocardium with the bidomain heart model. The task is an inverse source problem governed by partial differential equations (PDE). Our main contribution is solving the inverse problem within a PDE-constrained opt...
متن کامل